Thursday, January 10, 2008

Network Layer

s originally defined, the Network layer solves the problem of getting packets across a single network. Examples of such protocols are X.25, and the ARPANET's Host/IMP Protocol.

With the advent of the concept of internetworking, additional functionality was added to this layer, namely getting data from the source network to the destination network. This generally involves routing the packet across a network of networks, known as an internetwork or (lower-case) internet.

In the Internet protocol suite, IP performs the basic task of getting packets of data from source to destination. IP can carry data for a number of different upper layer protocols; these protocols are each identified by a unique protocol number: ICMP and IGMP are protocols 1 and 2, respectively.

Some of the protocols carried by IP, such as ICMP (used to transmit diagnostic information about IP transmission) and IGMP (used to manage IP Multicast data) are layered on top of IP but perform internetwork layer functions, illustrating an incompatibility between the Internet and the IP stack and OSI model. All routing protocols, such as OSPF, and RIP are also part of the network layer. What makes them part of the network layer is that their payload is totally concerned with management of the network layer. The particular encapsulation of that payload is irrelevant for layering purposes.

No comments: