Thursday, January 10, 2008

Applications

The above is a very simple example of run-length encoding, wherein large runs of consecutive identical data values are replaced by a simple code with the data value and length of the run. This is an example of lossless data compression. It is often used to optimize disk space on office computers, or better use the connection bandwidth in a computer network. For symbolic data such as spreadsheets, text, executable programs, etc., losslessness is essential because changing even a single bit cannot be tolerated (except in some limited cases).

For visual and audio data, some loss of quality can be tolerated without losing the essential nature of the data. By taking advantage of the limitations of the human sensory system, a great deal of space can be saved while producing an output which is nearly indistinguishable from the original. These lossy data compression methods typically offer a three-way tradeoff between compression speed, compressed data size and quality loss.

Lossy image compression is used in digital cameras, greatly increasing their storage capacities while hardly degrading picture quality at all. Similarly, DVDs use the lossy MPEG-2 codec for video compression.

In lossy audio compression, methods of psychoacoustics are used to remove non-audible (or less audible) components of the signal. Compression of human speech is often performed with even more specialized techniques, so that "speech compression" or "voice coding" is sometimes distinguished as a separate discipline than "audio compression". Different audio and speech compression standards are listed under audio codecs. Voice compression is used in Internet telephony for example, while audio compression is used for CD ripping and is decoded by audio players.

No comments: