The theoretical background of compression is provided by information theory (which is closely related to algorithmic information theory) and by rate-distortion theory. These fields of study were essentially created by Claude Shannon, who published fundamental papers on the topic in the late 1940s and early 1950s. Cryptography and coding theory are also closely related. The idea of data compression is deeply connected with statistical inference.
Many lossless data compression systems can be viewed in terms of a four-stage model. Lossy data compression systems typically include even more stages, including, for example, prediction, frequency transformation, and quantization.
The Lempel-Ziv (LZ) compression methods are among the most popular algorithms for lossless storage. DEFLATE is a variation on LZ which is optimized for decompression speed and compression ratio, although compression can be slow. DEFLATE is used in PKZIP, gzip and PNG. LZW (Lempel-Ziv-Welch) is used in GIF images. Also noteworthy are the LZR (LZ-Renau) methods, which serve as the basis of the Zip method. LZ methods utilize a table-based compression model where table entries are substituted for repeated strings of data. For most LZ methods, this table is generated dynamically from earlier data in the input. The table itself is often Huffman encoded (e.g. SHRI, LZX). A current LZ-based coding scheme that performs well is LZX, used in Microsoft's CAB format.
The very best compressors use probabilistic models whose predictions are coupled to an algorithm called arithmetic coding. Arithmetic coding, invented by Jorma Rissanen, and turned into a practical method by Witten, Neal, and Cleary, achieves superior compression to the better-known Huffman algorithm, and lends itself especially well to adaptive data compression tasks where the predictions are strongly context-dependent. Arithmetic coding is used in the bilevel image-compression standard JBIG, and the document-compression standard DjVu. The text entry system, Dasher, is an inverse-arithmetic-coder.
Matt Mahoney, one of the 3 founders of the Hutter Prize, claims that "Compression is Equivalent to General Intelligence".
No comments:
Post a Comment